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Ion-cyclotron instability in current-carrying Lorentzian (kappa)
and Maxwellian plasmas with anisotropic temperatures: A comparative study
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Current-driven electrostatic ion-cyclotron instability has so far been studied for Maxwellian plasma

with isotropic and anisotropic temperatures. Since satellite-measured particle velocity distributions

in space are often better modeled by the generalized Lorentzian (kappa) distributions and since

temperature anisotropy is quite common in space plasmas, theoretical analysis of the current-

driven, electrostatic ion-cyclotron instability is carried out in this paper for electron-proton plasma

with anisotropic temperatures, where the particle parallel velocity distributions are modeled by

kappa distributions and the perpendicular velocity distributions are modeled by Maxwellian distri-

butions. Stability properties of the excited ion cyclotron modes and, in particular, their dependence

on electron to ion temperature ratio and ion temperature anisotropy are presented in more detail.

For comparison, the corresponding results for bi-Maxwellian plasma are also presented. Although

the stability properties of the ion cyclotron modes in the two types of plasmas are qualitatively sim-

ilar, significant quantitative differences can arise depending on the values of je and ji. The com-

parative study is based on the numerical solutions of the respective linear dispersion relations.

Quasilinear estimates of the resonant ion heating rates due to ion-cyclotron turbulence in the two

types of plasma are also presented for comparison. VC 2011 American Institute of Physics.

[doi:10.1063/1.3632974]

I. INTRODUCTION

The satellite-measured particle velocity distributions in

the solar wind and in many space plasmas often exhibit non-

Maxwellian suprathermal tails that decrease as a power-law

of the velocity.1 Such deviations from the Maxwellian distri-

butions are expected in plasmas with sufficiently low degree

of collisionality. The distribution function that can better

model such particle velocity distributions is the so-called

generalized Lorentzian or kappa ðjÞ distribution.2 The kappa

distribution with a finite value of the spectral index j has a

power-law tail at velocities larger than the thermal velocity

and, consequently, has a substantially larger number of

suprathermal particles in comparison with the Maxwellian

distribution. It approaches the Maxwellian distribution in the

limit as j!1. Typical values of j for space plasmas are in

the range 2–6. In the last several years, many authors studied

electrostatic and electromagnetic waves in spatially homoge-

neous and weakly inhomogeneous magnetoplasmas using

different types of kappa distributions for the equilibrium

state.1,3–17 The presence of substantially larger number of

suprathermal particles in comparison with the Maxwellian

was shown to have important distinguishing effects on the

spectral properties of the excited waves and on the wave-

particle interactions, in particular. In this paper, we present

for the first time the stability properties of the electrostatic

ion cyclotron modes in current-carrying Lorentzian (kappa)

plasma with anisotropic electron and ion temperatures and

compare them with those in Maxwellian plasma. The com-

parative study is based on the numerical solutions of the lin-

ear dispersion relations for the two types of plasma.

Numerical analysis allows the investigation of parameter

regimes that are not accessible to tractable analytical treat-

ments and thus allows a more comprehensive quantitative

comparison. Quasilinear estimates of the resonant ion heat-

ing rates due to ion cyclotron turbulence in the two types of

plasma are also presented for comparison.

Electrostatic ion-cyclotron instability, which considers

waves propagating at large angles to the ambient magnetic

field with frequency near the ion cyclotron frequency, can

arise from various free energy sources such as field-aligned

currents,18–23 electron beams,24 ion beams25,26 or combined

effects of ion beams, and counterstreaming electrons.27 We

concentrate here on the field-aligned current, which is a com-

mon feature in many space and laboratory plasmas, as the

free energy source for the ion-cyclotron instability.

Current-driven electrostatic ion-cyclotron instability

plays an important role in the generation of ion cyclotron tur-

bulence and in the concomitant anomalous ion heating

observed in space and laboratory plasmas. The previous the-

oretical and numerical studies of the instability assumed that

the electron and the ion distributions in velocity space are

Maxwellians. Drummond and Rosenbluth18 first developed

the theory of this instability for Maxwellian plasma with iso-

tropic electron and ion temperatures and showed that, for

Te � Ti, the critical value of the electron drift relative to the

stationary ions (i.e., the critical current) for the onset of the

instability is much smaller than that for the onset of the elec-

trostatic ion-acoustic instability, which considers waves

a)Present address: Institute for Scientific Research, Boston College, Chestnut

Hill, Massachusetts 02467, USA.
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propagating parallel to the magnetic field. Kindel and Ken-

nel19 extended the theoretical analysis of Drummond and

Rosenbluth18 and showed that the ion cyclotron waves are

unstable to smaller currents for a broad range of Te=Ti. The

effects of temperature anisotropies, which are also important

features of collisionless plasmas, on the excitation of the

current-driven electrostatic ion-cyclotron instability in Max-

wellian plasma were first investigated by Lee,21 who fol-

lowed the theoretical analysis of Kindel and Kennel.19 Later,

Okuda and Ashour-Abdalla22,23 investigated the effects of

temperature anisotropies over a wider range of parameters

by numerically solving the dispersion relation. For a review

of these previous studies, see Ref. 28.

In Sec. II, we present the mathematical model and the lin-

ear dispersion relations for the current-driven ion cyclotron

modes in Maxwellian and Lorentzian (kappa) plasmas. In

Sec. III, we present the approximate analysis of the dispersion

relations in order to gain some preliminary understanding of

the differences in the stability properties of the ion cyclotron

modes in the two types of plasma. In Sec. IV, we present the

numerical solutions of the dispersion relations. In Sec. V, we

calculate the resonant ion heating rates due to ion-cyclotron

turbulence in the two types of plasma, within the framework

of the quasilinear theory, and discuss their differences. The

paper is concluded with a summary in Sec. VI.

II. LINEAR DISPERSION RELATION FOR
CURRENT-DRIVEN ION CYCLOTRON MODES

The starting point of our study is the linear dispersion

relation for obliquely propagating electrostatic ion cyclotron

modes in current-carrying plasma with anisotropic electron

and ion temperatures. For this, we consider spatially homo-

geneous, nonrelativistic, collisionless plasma in which elec-

trons are drifting along the uniform ambient magnetic field

B0 with velocity V0 relative to the stationary ions. Consider-

ing normal modes of the form exp½iðk � r� xtÞ� with

frequency x and propagation vector k, we assume

jðx� kkV0Þ=Xej � 1, jkkVek=Xej � 1 and k?Ve? =Xe � 1,

where Xe ¼ eB0=ðmecÞ is the electron cyclotron frequency,

Vek and Ve? are the electron thermal speeds defined as

V2
ekð?Þ ¼ Tekð?Þ=me, kk ¼ ðk � B0Þ=B0, and k? is the perpen-

dicular (to B0) component of k. We further assume that

xpe=Xe � 1, where xpe is the electron plasma frequency.

These assumptions imply that the electrons are strongly mag-

netized particles so that their dynamic response to the elec-

tric field perturbation is practically one-dimensional (parallel

to B0). For the ion response, however, we retain both the par-

allel and the perpendicular dynamics. Then, according to the

linearized Vlasov theory, the dispersion relation for

obliquely propagating electrostatic waves is given by29

1þ 4pe2

mek2

ð
dv

x� kkvk
kk

@

@vk
Feðv2

?; vkÞ þ
4pe2

mik2

�
Xþ1

n¼�1

ð
dv

J2
nðlÞ

x� kkvk � nXi
kk

@

@vk
þ nXi

v?

@

@v?

� �

� Fiðv2
?; vkÞ ¼ 0; (1)

for Im x > 0. Here Faðv2
?; vkÞ is the unperturbed (equilib-

rium) distribution function for the charged particle species

a ¼ e; i, Xi ¼ eB0=ðmicÞ, JnðlÞ is the Bessel function of

order n, l ¼ k?v?=Xi, and k2 ¼ k2
k þ k2

?. For analytic con-

tinuation to Im x � 0, the Landau contour has to be used for

carrying out the vk integration. The two types of equilibrium

distribution function, considered here for the derivation of

the linear dispersion relation, are the following.

A. Bi-Maxwellian

Faðv2
?; vkÞ ¼

n0

p3=2hakh
2
a?

exp � v2
?

h2
a?

 !
exp �

u2
ak

h2
ak

 !
; (2)

where uak 	 vk � Va0 with Va0 ¼ V0 for the electrons and

Va0 ¼ 0 for the ions, h2
akð?Þ is related to the particle tempera-

ture Takð?Þ by h2
akð?Þ ¼ 2Takð?Þ=ma 	 2V2

akð?Þ, and Fa is nor-

malized to the particle density n0(same for both electrons

and ions). The definitions of Tak and Ta? are

n0Tak ¼ 2pma

ð
dv?dvkv?u2

akFaðv2
?; vkÞ; (3)

n0Ta? ¼ pma

ð
dv?dvkv

3
?Faðv2

?; vkÞ: (4)

Substituting Faðv2
?; vkÞ, given by Eq. (2), into Eq. (1) and

performing the velocity space integrations, we obtain the

well-known dispersion relation

Dðk;xÞ 	 1�
x2

pe

k2h2
ek

Z0Mð1eÞ �
x2

pi

k2h2
ik

Xþ1
n¼�1

KnðbiÞ

� Z0Mð1niÞ �
2nXi

kkhik

h2
ik

h2
i?

ZMð1niÞ
" #

¼ 0: (5)

Here, x2
pa ¼ 4pe2n0=ma, KnðbiÞ ¼ InðbiÞ expð�biÞ, In is the

modified Bessel function of the first kind, bi ¼ k2
?h

2
i?=ð2X2

i Þ,
1e ¼ ðx� kkV0Þ=ðkkhekÞ, and 1ni ¼ ðx� nXiÞ=ðkkhikÞ,
where kk > 0 is assumed. ZMð1Þ is the well-known plasma

dispersion function30 associated with the Maxwellian vk-dis-

tribution and it is defined as

ZMð1Þ ¼
1ffiffiffi
p
p
ðþ1
�1

ds
expð�s2Þ

s� 1
; (6)

for Im 1 > 0 and as the analytic continuation of this for

Im 1 � 0. The prime notation on ZMð1Þ denotes its derivative

with respect to the argument.

B. Kappa-Maxwellian

Faðv2
?; vkÞ ¼

n0f ðjaÞ
p3=2hakh

2
a?

1þ
u2

ak

jah
2
ak

 !�ðjaþ1Þ

exp � v2
?

h2
a?

 !
;

(7)

where f ðjaÞ ¼ Cðja þ 1Þ=½j1=2
a Cðja þ 1=2Þ�, CðxÞ being the

gamma function. As before, uak 	 vk � Va0 with Va0 ¼ V0
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for the electrons, Va0 ¼ 0 for the ions, and Fa is normalized

to the particle density n0(same for both electrons and ions),

while h2
ak and h2

a? are related to the particle “temperatures”

Tak and Ta?, as defined by Eqs. (3) and (4), according

to h2
ak ¼ ½ð2ja � 1Þ=ja�ðTak=maÞ 	 ½ð2ja � 1Þ=ja�V2

ak and

h2
a? ¼ 2Ta?=ma 	 2V2

a?, provided ja > 1=2. As ja !1,

Fa [given by Eq. (7)] asymptotically approaches the bi-

Maxwellian [given by Eq. (2)]. In Eq. (7), the particle distri-

bution in vk—space is modeled by the kappa distribution

function, while the distribution in v?—space is modeled by

the Maxwellian distribution. The physical arguments for not

considering a kappa distribution in v?—space are the follow-

ing. First, in the presence of an ambient magnetic field, the

mechanism that produces the kappa type distribution in ve-

locity space is most likely to be more effective in vk—space.

Second, the most important physical aspect of the kappa dis-

tribution, which distinguishes it from the Maxwellian distri-

bution, is the resonant wave-particle interaction (Landau and

cyclotron resonances) between the excited waves and the

enhanced population of suprathermal charged particles that

are moving along the ambient magnetic field. It may be men-

tioned, however, that a kappa distribution in v?—space does

not pose a serious mathematical difficulty. With it, the veloc-

ity integral in the ion term involving J2
n and ð@Fi=@v?Þ can-

not be expressed in terms of any known mathematical

function; but, it can be numerically evaluated quite easily.

The integral approaches its Maxwellian counterpart, KnðbiÞ,
in the limit as ji !1, and its numerical values for finite

values of ji are not too different from those of KnðbiÞ.
Substituting Faðv2

?; vkÞ, given by Eq. (7), into Eq. (1)

and performing the velocity space integrations, the disper-

sion relation is obtained as

Dðk;xÞ 	 1�
x2

pe

k2h2
ek

Z0je
ð1eÞ �

x2
pi

k2h2
ik

Xþ1
n¼�1

KnðbiÞ

� Z0ji
ð1niÞ �

2nXi

kkhik

h2
ik

h2
i?

Zji
ð1niÞ

" #
¼ 0; (8)

where KnðbiÞ ¼ InðbiÞ expð�biÞ, In is the modified Bessel

function of the first kind, bi ¼ k2
?h

2
i?=ð2X2

i Þ,
1e ¼ ðx� kkV0Þ=ðkkhekÞ, and 1ni ¼ ðx� nXiÞ=ðkkhikÞ with

kk > 0. The dispersion relation for kappa-Maxwellian

plasma is formally equivalent to that for the bi-Maxwellian

plasma, except that h2
ak ¼ ðTak=maÞ½ð2ja � 1Þ=ja� and

Zjað1Þ is the modified plasma dispersion function associated

with the kappa distribution function in vk—space. The modi-

fied plasma dispersion function is defined by16,17

Zjað1Þ ¼
f ðjaÞffiffiffi

p
p

ðþ1
�1

ds

ðs� 1Þð1þ s2=jaÞjaþ1
; (9)

for Im 1 > 0 and by the analytic continuation of this for

Im 1 � 0. The prime notation on Zjað1Þ denotes its derivative

with respect to the argument. Aside from the multiplication

factor, this function is analogous to the plasma dispersion

function that was first introduced and discussed by Summers

and Thorne3 and was later further analyzed by Mace and

Hellberg31 and Summers et al.32

III. APPROXIMATE STABILITY ANALYSIS

Here, we present the approximate analytical solutions of

the dispersion relations in order to gain some preliminary

understanding of the ion-cyclotron instability in the two

types of plasmas. Considering x ¼ Re xþ i Im x and mak-

ing a Taylor series expansion of Dðk;xÞ around x ¼ Re x
while assuming Im x� Re x and Im D� Re D, we find to

lowest order,

Re Dðk;x ¼ Re xÞ ¼ 0; (10)

Im x ¼ � Im Dðk;x ¼ Re xÞ
½@Re Dðk;xÞ=@x�x¼Re x

: (11)

These two equations determine Re x and Im x. Generally

speaking, unstable solutions are found when Re x=kk < V0

(i.e., Re 1e < 0) so that ð@Fe=@vkÞvk¼Re x=kk
> 0 (Landau

growth) and, simultaneously, when (a) Re1mi > 1 for cyclo-

tron modes with Re x � mXi; and (b) Re1ni 
 1 for all

n 6¼ m, such that the Landau growth rate due to the drifting

(current-carrying) electrons exceeds the total ion damping

(both Landau and cyclotron damping) rate. For the approxi-

mate stability analysis, we follow the commonly used analyt-

ical approach of Drummond and Rosenbluth,18 i.e., we

consider j1ej � 1 and j1nij 
 1 for all n and retain the lead-

ing terms in the power series expansion of the electron

plasma dispersion function and the asymptotic expansion of

the ion plasma dispersion function. The power series and the

asymptotic expansions of ZMð1Þ are30

ZMð1Þ ¼ i
ffiffiffi
p
p

expð�12Þ � 21þ 413=3� � � � ; j1j � 1; (12)

ZMð1Þ ffi i
ffiffiffi
p
p

expð�12Þ � 1

1
� 1

213
� � � � ; j1j 
 1; (13)

while the power series and the asymptotic expansions of

Zjað1Þ for integer values of ja are3,17,18

Zjað1Þ ¼ i
ffiffiffi
p
p f ðjaÞ
ð1þ 12=jaÞjaþ1

� 2ja þ 1

ja
1 1� 2ja þ 3

3ja
12 þ ���

� �
; j1j � 1;

(14)

Zjað1Þ¼ i
ffiffiffi
p
p f ðjaÞ
ð1þ12=jaÞjaþ1

�1

1
� ja

2ja�1

1

13
� ���; j1j
 1:

(15)

For noninteger (including half-integer) values of ja, the as-

ymptotic expansion has small correction terms,31,32 which

may be neglected.

A. Bi-Maxwellian plasma

Restricting ourselves to the fundamental ion cyclotron

mode, i.e., Re x � Xi, we retain only the n ¼ 1 term in the

ion sum. Using the leading terms of Eqs. (12) and (13) in

Eq. (5), we find
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Re Dðk;x¼ RexÞ ffi 1þ
2x2

pe

k2h2
ek
�

2x2
pi

k2h2
ik

h2
ik

h2
i?

Xi

Rex�Xi
K1ðbiÞ;

(16)

Im Dðk;x¼RexÞffi 2i
ffiffiffi
p
p x2

pe

k2h2
ek

Rex�kkV0

kkhek

þ2i
ffiffiffi
p
p x2

pi

k2h2
ik

Rex�ð1�h2
ik=h

2
i?ÞXi

kkhik

�K1ðbiÞexpð�12
1iÞ: (17)

Then, referring to Eqs. (10) and (11), we obtain

Re x
Xi
¼ 1þ

Tek
Tik

Tik
Ti?

K1ðbiÞ
1þ k2k2

De

; (18)

Im x
Xi
¼

ffiffiffi
p
2

r
Tek
Tik

Tik
Ti?

K1ðbiÞ
ð1þ k2k2

DeÞ
2

kkV0 � Re x

kkVek

�

�
Tek
Tik

Re x� ð1� Tik=Ti?ÞXi

kkVik
K1ðbiÞ expð�g2

i Þ
�
;

(19)

where gi 	 ðRe x� XiÞ=ð
ffiffiffi
2
p

kkVikÞ. We have related h2
akð?Þ

to Takð?Þ and introduced the Debye length, kDe, defined by

k2
De ¼ Tek=ðmex2

peÞ. The onset condition for instability

ðIm x > 0Þ is

V0

Vek
>

Re x
kkVek

þ
Tek
Tik

Re x� ð1� Tik=Ti?ÞXi

kkVik
K1ðbiÞ expð�g2

i Þ:

(20)

These results for anisotropic ion temperatures ðTik 6¼ Ti?Þ
were previously obtained by Lee21 and by Okuda and

Ashour-Abdalla.22 They reduce to the earlier results of

Drummond and Rosenbluth18 for isotropic ion temperatures

ðTik ¼ Ti?Þ.

B. Kappa-Maxwellian plasma

As before, we restrict ourselves to Re x � Xi and use

the leading terms of Eqs. (14) and (15) in Eq. (8) to find

ReDðk;x ¼ Re xÞ ¼ 1þ
x2

pe

k2h2
ek

2je þ 1

je

�
2x2

pi

k2h2
ik

h2
ik

h2
i?

Xi

Re x� Xi
K1ðbiÞ; (21)

ImDðk;x¼RexÞ¼2i
ffiffiffi
p
p x2

pe

k2h2
ek

Rex� kkV0

kkhek

jeþ1

je
f ðjeÞ

þ2i
ffiffiffi
p
p x2

pi

k2h2
ik

K1ðbiÞ
kkhik

f ðjiÞ
ð1þ 12

1i=jiÞjiþ1

� jiþ1

ji

Rex�Xi

1þ 12
1i=ji

þ
h2

ik

h2
i?

Xi

 !
: (22)

Then, referring to Eqs. (10) and (11), we obtain

Re x
Xi
¼ 1

þ
Tek
Tik

Tik
Ti?

2je � 1

2je þ 1

K1ðbiÞ
1þ ½ð2je � 1Þ=ð2je þ 1Þ�k2k2

De

;

(23)

Im x
Xi
¼

ffiffiffi
p
2

r
2je � 1

2je þ 1

� �2Tek
Tik

Tik
Ti?

K1ðbiÞ
1þ ð2je � 1Þ=ð2je þ 1Þ½ �k2k2

De

� �2

�
kkV0 � Re x

kkVek

je þ 1

je

2je

2je � 1

� �3=2

f ðjeÞ
(

�
Tek
Tik

K1ðbiÞ
kkVik

2ji

2ji � 1

� �3=2

f ðjiÞ

� 1þ g2
i

ji � 1=2

� ��ðjiþ1Þ
1þ g2

i

ji � 1=2

� ��1
ji þ 1

ji
Re x� Xið Þ þ 2ji � 1

2ji

Tik
Ti?

Xi

" #)
; (24)

where gi ¼ ðRe x� XiÞ=ð
ffiffiffi
2
p

kkVikÞ. We have related h2
akð?Þ

to Takð?Þ and introduced the Debye length kDe. The onset

condition for instability ðIm x > 0Þ is

V0

Vek
>

Rex
kkVek

þ
Tek
Tik

� 2ji

2ji�1

� �3=2
2je�1

2je

� �3=2 je

jeþ1

f ðjiÞ
f ðjeÞ

K1ðbiÞ
kkVik

� 1þ g2
i

ji�1=2

� ��ðjiþ1Þ
1þ g2

i

ji�1=2

� ��1
"

�jiþ1

ji
Rex�Xið Þþ2ji�1

2ji

Tik
Ti?

Xi

#
: (25)

The results presented in Eqs. (21)–(25) are new and they

reduce to the corresponding results for bi-Maxwellian

plasma [Eqs. (16)–(20)] when je; ji !1.

The approximate analytical solutions indicate that the

stability properties of the current-driven ion cyclotron modes

in both types of plasma (bi-Maxwellian and kappa-

Maxwellian) depend on me=mi, xpe=Xe, V0, kk, k?, electron

to ion temperature ratio ðTek=TikÞ, and ion temperature ani-

sotropy ðTik=Ti?Þ. Dependence on xpe=Xe arises through

the term x2
pe=ðk2h2

ekÞ in the dispersion relations as

x2
pe=ðk2h2

ekÞ / ðk2k2
DeÞ
�1 ¼ ðmi=meÞðx2

pe=X
2
eÞ=ðk2q2

i Þ, where

qið	 Vi?=XiÞ is the ion gyroradius. The analytical solutions

also indicate that Re x, Im x, and the onset condition for

instability in kappa-Maxwellian plasma can be quite
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different from those in bi-Maxwellian plasma depending on

the choice of the values of je and ji. Comparison shows that

Re x is reduced in kappa-Maxwellian plasma, while both the

electron term that drives the instability when V0 > Re x=kk
and the ion cyclotron damping term in Im x are enhanced

in kappa-Maxwellian plasma. The enhancement of the

electron-drive term in kappa-Maxwellian plasma is due to

the reduction of Re x and the multiplying factors involving

je. The enhancement of the ion cyclotron damping term in

kappa-Maxwellian plasma is predominantly due to its

power-law dependence on gi > 1 in contrast with its expo-

nential dependence on gi > 1 in bi-Maxwellian plasma. For

the same reason, the threshold value of V0 for the onset of

the instability in kappa-Maxwellian plasma is enhanced over

the corresponding value in bi-Maxwellian plasma.

We shall not pursue the analytical solutions any further

as they are valid only for the restricted values of the afore-

mentioned parameters for which the assumed conditions

(j1ej � 1 and j1nij 
 1 for all n) can be satisfied. Outside the

range of validity, the analytical solutions are not only quanti-

tatively inaccurate; they even give erroneous dependence on

kk, for example. For an accurate and comprehensive study of

the entire unstable spectrum of the current-driven ion-cyclo-

tron modes, it is, therefore, necessary to solve the dispersion

relations numerically. Indeed, numerical analysis shows that

the assumed conditions (j1ej � 1 and j1nij 
 1 for all n) are

rather difficult to satisfy, particularly when the maximum

values of the growth rates occur.

IV. NUMERICAL SOLUTIONS OF THE DISPERSION
RELATIONS

We have developed a numerical code that evaluates the

plasma dispersion functions ZMð1Þ, Zjað1Þ and solves the dis-

persion relations to find the complex values of xð¼ xr þ icÞ
as a function of the aforementioned variable parameters.

Here, we consider the electron-proton plasma

ðme=mi ¼ 1=1836Þ and concentrate on the solutions with

xr � Xi. For kappa-Maxwellian plasma, je ¼ ji ¼ 3 is

assumed. The numerical results, graphically presented in

Figs. 1–9, 13, and 14, are obtained by assuming

xpe=Xe ¼ 1=15, which is consistent with the assumption

xpe=Xe � 1 used in the derivation of the dispersion rela-

tions. The important effects of xpe=Xe on the stability prop-

erties are discussed later in this section by means of Figs.

10–12.

Figure 1 shows the threshold values (critical values) of

V0 (normalized to Vek and denoted by VC), above which the

instability is excited, as a function of Tek=Tik and Tik=Ti?.

The threshold values are obtained by minimizing V0=Vek
with respect to both kk and k?. In this figure and in all

the other figures, the solid curves represent the results for bi-

Maxwellian plasma and the dashed curves for kappa-

FIG. 1. Threshold (critical) value of electron drift speed, normalized to Vek
and denoted by VC, as a function of Tek=Tik and Tik=Ti? for xpe=Xe ¼ 1=15.

The solid curves represent results for bi-Maxwellian plasma and the

dashed curves represent results for kappa-Maxwellian ðje ¼ ji ¼ 3Þ
plasma. The curves are labeled by the selected values of Tik=Ti? and

Tek=Tik. FIG. 2. ImWð	 Imx=XiÞ, maximized with respect to kk and k?, as a func-

tion of V0ð	 V0=VekÞ for xpe=Xe ¼ 1=15 and selected values of Tek=Tik
and Tik=Ti?. The solid curves represent results for bi-Maxwellian plasma

and the dashed curves represent results for kappa-Maxwellian ðje ¼ ji ¼ 3Þ
plasma. The curves are labeled by the selected values of Tek=Tik and

Tik=Ti?.
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Maxwellian plasma. The top panel of Fig. 1 shows that, for a

fixed value of Tik=Ti?, the value of VC in both types of plas-

mas decreases sharply as Tek=Tik increases and then settles

down to a value which is nearly independent of Tek=Tik. It

also indicates that, for a fixed value of Tek=Tik, the value of

VC decreases as Tik=Ti? increases. This is shown more ex-

plicitly in the bottom panel of Fig. 1. The results for bi-

Maxwellian plasma are in agreement with those obtained

earlier.21–23 The new results in Fig. 1 are that a larger VC

(i.e., larger current) is needed to excite the instability in

kappa-Maxwellian plasma for all Tik=Ti? and for all Tek=Tik
above a certain value, which increases with decreasing

Tik=Ti?.

Figure 2 shows the maximum values of

Im Wð	 Im x=XiÞ [maximized with respect to kk, k? and

denoted by ðIm WÞmax ] as a function of V0ð	 V0=VekÞ for

selected values of Tek=Tik and Tik=Ti?. Figure 3 shows the

corresponding values of Re Wð	 Re x=XiÞ, denoted by

ðRe WÞmax, as a function of V0ð	 V0=VekÞ for the same val-

ues of Tek=Tik and Tik=Ti?. As expected, for all values of

Tek=Tik, Tik=Ti? and for both types of plasma, ðIm WÞmax

decreases as V0 decreases toward the threshold values. How-

ever, the new and interesting result is that, for all values of

Tek=Tik and Tik=Ti?, ðIm WÞmax in kappa-Maxwellian plasma

is larger than that in bi-Maxwellian plasma when V0 is much

larger than the threshold value; decreases more rapidly as V0

decreases; and then becomes smaller as V0 approaches the

threshold value VC. This is consistent with the results pre-

sented in Fig. 1, namely, VC is larger for kappa-Maxwellian

plasma. Figure 3 shows that ðRe WÞmax is smaller in kappa-

Maxwellian plasma than in bi-Maxwellian plasma for all val-

ues of V0 > VC, Tek=Tik, and Tik=Ti?. It should be pointed

out that the approximate analytical solutions in Sec. III do

not show the dependence, albeit weak, of the real frequency

on V0. As Fig. 2 indicates the maximum linear growth rate

of the instability can be somewhat large when Tek=Tik,
Tik=Ti? are large ð> 1Þ and simultaneously when V0 is also

large (e.g., V0 ¼ 1). This is particularly true for the kappa-

Maxwellian plasma. The linear analysis still remains valid as

ðIm WÞmax=ðRe WÞmax � 0:2 under those conditions. All it

suggests is a faster onset of the nonlinear processes. How-

ever, according to Fig. 1, the instability can be excited with a

much smaller V0ð� 1Þ when Tek=Tik > 1 and Tik=Ti? > 1.

For example, (1) when Tek=Tik ¼ 1 and Tik=Ti? ¼ 5,

VC;M ffi 0:28 and VC;K ffi 0:32; (2) when Tek=Tik ¼ 5 and

Tik=Ti? ¼ 1, VC;M ffi 0:14 and VC;K ffi 0:17; and (3) when

Tek=Tik ¼ 5 and Tik=Ti? ¼ 5, VC;M ffi 0:12 and VC;K ffi 0:14.

Here, VC;MðKÞ refers to the threshold value VC for bi-

Maxwellian (kappa-Maxwellian) plasma. The maximum lin-

ear growth rates of the instability are quite small when V0 is

above and near these small threshold values (see Fig. 2) and,

FIG. 3. ReWð	 Rex=XiÞ, corresponding to ðImWÞmax shown in Fig. 2, as

a function of V0ð	 V0=VekÞ for xpe=Xe ¼ 1=15 and selected values of

Tek=Tik and Tik=Ti?. The solid curves represent results for bi-Maxwellian

plasma and the dashed curves represent results for kappa-Maxwellian

ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected values of

Tek=Tik and Tik=Ti?.

FIG. 4. (Top panel) ImWð	 Imx=XiÞ, maximized with respect to kk and

k?, and (bottom panel) ðkk=k?Þ, for which the maximum values of ImW are

obtained, as a function of Tek=Tik for xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

and selected values of Tik=Ti?. The solid curves represent results for bi-

Maxwellian plasma and the dashed curves represent results for kappa-

Maxwellian ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected

values of Tik=Ti?.
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for such values of V0, the linear stability analysis is certainly

appropriate. In the following presentation of the various

characteristics of the unstable ion-cyclotron modes in the

two types of plasma, we have used V0 ¼ 1 in order to cover

a large range of values of Tek=Tik and Tik=Ti? for which the

instability occurs (see Fig. 1).

The top panel of Fig. 4 shows ðIm WÞmax, defined as

above, as a function of Tek=Tik for selected values of Tik=Ti?.

It is evident that, for a fixed Tik=Ti?, ðIm WÞmax increases

with Tek=Tik (rate of increase being larger for a larger

Tik=Ti?) and that it increases more rapidly in kappa-

Maxwellian plasma. The bottom panel shows the values of

kk=k? [denoted by ðKratioÞmax ], for which ðIm WÞmax are

obtained, as a function of Tek=Tik for the same selected val-

ues of Tik=Ti?. It shows that the angle (between k and B0) of

propagation of the maximum unstable modes becomes

smaller with increasing values of Tek=Tik (i.e., the modes

propagate more parallel to B0) and that this change in the

angle of propagation occurs more rapidly in kappa-

Maxwellian plasma. Figure 4 also indicates that, for a fixed

Tek=Tik, both ðIm WÞmax and ðKratioÞmax increase substan-

tially as Tik=Ti? increases. These are shown more explicitly

in the top and bottom panels of Fig. 5. Numerical analysis

further shows that the magnitudes of ðIm WÞmax and

ðKratioÞmax as a function of Tek=Tik and Tik=Ti? in both types

of plasma depend on the choice of the value of V0 > VC.

Figures 6–9 show the spectral ðx vs kÞ behavior of the

unstable ion-cyclotron modes for the selected values of

Tek=Tik and Tik=Ti?. In these figures, Kparð	 KkÞ ¼ kkqi and

Kperpð	 K?Þ ¼ k?qi, where qi is the ion gyroradius. Fig-

ures 6 and 7 show Re W and Im W versus K? for Kk ¼ 0:08

and various values of Tek=Tik and Tik=Ti?. They show that,

for a given Tik=Ti? (or Tek=Tik), Re x moves closer to Xi and

the growth rate ðIm xÞ decreases (suggesting larger critical

drift) as Tek=Tik (or Tik=Ti?) decreases. Conversely, Re x
moves away from Xi and the growth rate increases (suggest-

ing smaller critical drift) as Tek=Tik (or Tik=Ti?) increases.

These conclusions hold for both bi-Maxwellian and kappa-

Maxwellian plasmas. However, as the figures show, there are

significant quantitative differences between the unstable

spectra in the two types of plasma. Magnitudes of these dif-

ferences depend on the values of Tek=Tik and Tik=Ti? for the

assumed values of je, ji, and V0. The real frequencies are

smaller in kappa-Maxwellian plasma than in bi-Maxwellian

plasma for all values of K?. On the other hand, the growth

rates are larger in kappa-Maxwellian plasma than in bi-

Maxwellian plasma beyond some values of K?. Addition-

ally, the unstable spectra in kappa-Maxwellian plasma

extend to comparatively larger values of K?. Figures 8 and 9

show Re W and Im W versus Kk, for K? ¼ 0:8 and values of

FIG. 5. (Top panel) ImWð	 Imx=XiÞ, maximized with respect to kk and

k?, and (bottom panel) ðkk=k?Þ, for which the maximum values of ImW are

obtained, as a function of Tik=Ti? for xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

and selected values of Tek=Tik. The solid curves represent results for bi-

Maxwellian plasma and the dashed curves represent results for kappa-

Maxwellian ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected

values of Tek=Tik.

FIG. 6. (Top panel) ReWð	 Rex=XiÞ vs. K?ð 	 KperpÞ ¼ k?qi and (bot-

tom panel) ImWð	 Imx=XiÞ vs. K? for xpe=Xe ¼ 1=15,

V0ð	 V0=VekÞ ¼ 1, Kkð	 KparÞ ¼ kkqi ¼ 0:08, Tik=Ti? ¼ 1, and selected

values of Tek=Tik. The solid curves represent results for bi-Maxwellian

plasma and the dashed curves represent results for kappa-Maxwellian

ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected values of

Tek=Tik.
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Tek=Tik and Tik=Ti? same as those in Figs. 6 and 7. They

show similar (to Figs. 6 and 7) functional dependence of the

unstable spectra on Tek=Tik, Tik=Ti?, and similar differences

between the unstable spectra in the two types of plasma as a

function of Kk. Both the K?- and the Kk-dependence of

Im W and their differences in the two types of plasmas may

be understood in terms of the combined effects of the elec-

tron drive (Landau growth) and the ion cyclotron damping.

For heavier-ion plasma, qualitatively similar, but quanti-

tatively different due to increased ion mass, results are

obtained. We do not present those results here. Instead, more

interesting effects of the parameter xpe=Xe on the stability

properties of the ion-cyclotron modes are presented next.

Figure 10 shows the variation of VC (threshold value of V0

normalized to Vek) with respect to xpe=Xe 	 r (Sigma) for

Tek=Tik ¼ 1 and different values of Tik=Ti?. When r is less

than 0:02, VC is large exceeding unity. As r increases, VC

decreases sharply and then settles down to a value, which is

nearly independent of r. Furthermore, the values of VC are

larger for smaller values of Tik=Ti? and for all values of r.

The same functional behavior is found for both types of

plasma. However, as evident from the figure, there are appre-

ciable quantitative differences between the two types of

plasma. The top and bottom panels of Fig. 11, which are

obtained for V0 ¼ 1, Tek=Tik ¼ 1, and selected values of

Tik=Ti?, show that ðIm WÞmax and ðRe WÞmax, defined as

above, decrease as r decreases. The rate of decrement

increases as Tik=Ti? increases, and the instability disappears

when r is smaller than a certain value that depends on

Tik=Ti?. The disappearance of the instability has to do with

the fact that the electron drive decreases while the ion

damping increases as r decreases. Finally, Fig. 12 shows the

dependence of ðKratioÞmax, defined as above, on r for

V0 ¼ 1, Tek=Tik ¼ 1, and selected values of Tik=Ti?. For both

types of plasma, the angle (between k and B0) of propagation

of the maximum unstable mode decreases, i.e., the mode

propagates more parallel to B0, with increasing r. Quantita-

tive differences between the two types of plasma are evident

from the figures. Similar dependences on r are found for other

values of Tek=Tik, but they are not shown here. We have cho-

sen r ¼ 1=15 in the presentation for illustration purposes only

as VC tends to be insensitive to r around this value.

V. QUASILINEAR ION HEATING RATES

It has been argued that quasilinear plateau formation can-

not stabilize the current-driven ion-cyclotron instability

because of the slowly convecting nature of the modes and

growth continues until other nonlinear mechanisms provide

FIG. 7. (Top panel) ReWð	 Rex=XiÞ vs. K?ð 	 KperpÞ ¼ k?qi and (bot-

tom panel) ImWð	 Imx=XiÞ vs. K? for xpe=Xe ¼ 1=15,

V0ð	 V0=VekÞ ¼ 1, Kkð	 KparÞ ¼ kkqi ¼ 0:08, Tek=Tik ¼ 1, and selected

values of Tik=Ti?. The solid curves represent results for bi-Maxwellian

plasma and the dashed curves represent results for kappa-Maxwellian

ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected values of

Tik=Ti?.

FIG. 8. (Top panel) ReWð	 Rex=XiÞ vs. Kkð	 KparÞ ¼ kkqi and (bottom

panel) ImWð	 Imx=XiÞ vs. Kk for xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

K?ð	 KperpÞ ¼ k?qi ¼ 0:8, Tik=Ti? ¼ 1, and selected values of Tek=Tik.
The solid curves represent results for bi-Maxwellian plasma and the dashed

curves represent results for kappa-Maxwellian ðje ¼ ji ¼ 3Þ plasma. The

curves are labeled by the selected values of Tek=Tik.

092106-8 B. Basu and N. Grossbard Phys. Plasmas 18, 092106 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp

Approved for public release; distribution is unlimited; 377ABW-2011-0705; 12 May 2011.



saturation.22,23,33 Quasilinear analysis, therefore, does not

yield correct estimates of the ion heating rates. Nevertheless,

for the purposes of comparison, we present here the quasilin-

ear estimates of the ion heating rates due to ion-cyclotron tur-

bulence in bi-Maxwellian and kappa-Maxwellian plasmas.

The quasilinear response of the magnetized ions to

unstable electrostatic field fluctuations is described by34

@

@t
Fiðv2

?;vk;tÞ¼i
e2

m2
i

Xþ1
n¼�1

ð
dkj ~/ðk;tÞj2

� kk
@

@vk
þnXi

v?

@

@v?

� �
J2

nðlÞ
xk�kkvk�nXi

� kk
@

@vk
þnXi

v?

@

@v?

� �
Fiðv2

?;vk;tÞ; (26)

for small Im xk � 0. Here l ¼ k?v?=Xi, xk ¼ xðk?; kkÞ is

the complex solution of the linear dispersion relation, and
~/ðk; tÞ is the potential fluctuation, which, within the frame-

work of the quasilinear theory, evolves adiabatically in time

according to

@

@t
j ~/ðk; tÞj2 ¼ 2 Im xkðtÞj ~/ðk; tÞj2: (27)

We assume that the fundamental harmonic is the dominant

mode and so keep n ¼ 1 term only. Then, in the resonant

region of velocity space ðRe xk � kkvk � Xi ¼ 0Þ, Eq. (26)

can be approximated by34

FIG. 9. (Top panel) ReWð	 Rex=XiÞ vs. Kkð	 KparÞ ¼ kkqi and (bottom

panel) ImWð	 Imx=XiÞ vs. Kk for xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

K?ð	 KperpÞ ¼ k?qi ¼ 0:8, Tek=Tik ¼ 1, and selected values of Tik=Ti?.

The solid curves represent results for bi-Maxwellian plasma and the dashed

curves represent results for kappa-Maxwellian ðje ¼ ji ¼ 3Þ plasma. The

curves are labeled by the selected values of Tik=Ti?.

FIG. 10. Threshold (critical) value of electron drift speed, normalized to Vek
and denoted by VC, as a function of xpe=Xe ¼ r (Sigma) for Tek=Tik ¼ 1

and selected values of Tik=Ti?. The solid curves represent results for bi-

Maxwellian plasma and the dashed curves represent results for kappa-

Maxwellian ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected

values of Tik=Ti?.

FIG. 11. (Top panel) ImWð	 Imx=XiÞ, maximized with respect to kk and

k? and (bottom panel) ReWð	 Rex=XiÞ, corresponding to the ðImWÞmax, as

a function of xpe=Xe ¼ r (Sigma) for V0ð	 V0=VekÞ ¼ 1, Tek=Tik ¼ 1, and

selected values of Tik=Ti?. The solid curves represent results for bi-

Maxwellian plasma and the dashed curves represent results for kappa-

Maxwellian ðje ¼ ji ¼ 3Þ plasma. The curves are labeled by the selected

values of Tik=Ti?.
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under the small Im xk assumption. Here, dðxÞ is the Dirac d
function. Multiplying Eq. (28) by miv

2
?=2, using Eqs. (2) and

(7) for Fi on the right-hand side (for estimation purposes),

and integrating over velocities, we find

d

dt
Ti? ¼

ffiffiffiffiffiffiffiffi
pmi

2Tik

r
e2X2

i

Tik

ð
dk

jkkj
j ~/ðk; tÞj2K1ðbiÞIðk?; kkÞ; (29)

where

Iðk?; kkÞ ¼
Re xk � Xi

Xi
þ

Tik
Ti?

� �
expð�g2

ikÞ 	 IBM; (30)

for bi-Maxwellian plasma, and

Iðk?;kkÞ ¼ f ðjiÞ
2ji

2ji� 1
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ik

ji� 1=2
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jiþ 1

ji
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þ2ji� 1

2ji

Tik
Ti?

#
	 IKM; (31)

for kappa-Maxwellian plasma, provided ji > 1=2. Here

gik 	 ðRe xk � XiÞ=ð
ffiffiffi
2
p

kkVikÞ. Figure 13 shows Iðk?; kkÞ as

a function of the unstable values of Kkð	 kkqiÞ, for

K?ð	 k?qiÞ ¼ 0:8, xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

Tek=Tik ¼ 1, and selected values of Tik=Ti?. The solid curves

represent IBM given by Eq. (30) for bi-Maxwellian plasma

and the dashed curves represent IKM given by Eq. (31) for

kappa-Maxwellian plasma. The figure shows that IKM > IBM

over almost the entire unstable Kk spectrum. This is basically

due to the power-law dependence of IKM on gik, in contrast

with the exponential dependence of IBM on gik, when

jgikj > 1. Similar results are found for other values of

Tek=Tik.
Next, multiplying Eq. (28) by miv

2
k, using Eqs. (2) and

(7) for Fi on the right-hand side (for estimation purpose),

and integrating over velocities, we find

d

dt
Tik ¼

ffiffiffiffiffiffiffiffiffiffi
2pmi

Tik

s
e2X2

i

Tik

ð
dk

jkkj
j ~/ðk; tÞj2K1ðbiÞJðk?; kkÞ; (32)

where

Jðk?; kkÞ ¼ ðRe xk=Xi � 1ÞIBM 	 JBM; (33)

for bi-Maxwellian plasma, and

Jðk?; kkÞ ¼ ðRe xk=Xi � 1ÞIKM 	 JKM; (34)

for kappa-Maxwellian plasma. Figure 14 shows Jðk?; kkÞ as

a function of the unstable values of Kkð	 kkqiÞ, for

K?ð	 k?qiÞ ¼ 0:8, xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

Tek=Tik ¼ 1, and selected values of Tik=Ti?. The solid curves

represent JBM given by Eq. (33) for bi-Maxwellian plasma

and the dashed curves represent JKM given by Eq. (34) for

kappa-Maxwellian plasma. The figure shows that JKM > JBM

over almost the entire unstable Kk spectrum. Once again,

this is basically due to the power-law dependence of JKM on

gik, in contrast with the exponential dependence of JBM on

gik, when jgikj > 1. Similar results are found for other values

of Tek=Tik.
Furthermore, we may estimate that

dTi?=dt

dTik=dt
� IBM

2JBM

	 1

2

Xi

Re xk � Xi
; (35)

for bi-Maxwellian plasma and

dTi?=dt

dTik=dt
� IKM

2JKM

	 1

2

Xi

Re xk � Xi
; (36)

FIG. 13. The function I appearing in Eq. (29) vs. unstable values of

Kkð	 kkqiÞ for K?ð	 k?qiÞ ¼ 0:8, xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

Tek=Tik ¼ 1, and selected values of Tik=Ti?. The solid curves represent I

given by Eq. (30) for bi-Maxwellian plasma and the dashed curves represent

I given by Eq. (31) for kappa-Maxwellian ðje ¼ ji ¼ 3Þ plasma.

FIG. 12. Values of ðkk=k?Þ, for which the maximum values of ImW shown

in Fig. 11 are obtained, as a function of xpe=Xe ¼ r (Sigma) for

V0ð	 V0=VekÞ ¼ 1, Tek=Tik ¼ 1, and selected values of Tik=Ti?. The solid

curves represent results for bi-Maxwellian plasma and the dashed curves

represent results for kappa-Maxwellian ðje ¼ ji ¼ 3Þ plasma. The curves

are labeled by the selected values of Tik=Ti?.
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for kappa-Maxwellian plasma. Although the right-hand side

of Eqs. (35) and (36) is formally the same, they are quite dif-

ferent for bi-Maxwellian and kappa-Maxwellian plasmas. In

fact, numerical solutions of the linear dispersion relations

show that ðRe xk � XiÞ=Xi � 1 for both types of plasma,

but ðRe xk � XiÞ=Xi has smaller values for kappa-

Maxwellian plasma, when V0, Tek=Tik, and Tk=Ti? are not

too large [see Figs. 6–9]. Equations (35) and (36) then sug-

gest that, under these conditions, ions are heated preferen-

tially in the perpendicular direction and this effect is

enhanced in kappa-Maxwellian plasma. These conclusions

can also be derived from Figs. 13 and 14 where IBM, IKM,

JBM, and JKM are shown.

VI. SUMMARY

We have presented for the first time the linear stability

properties of the current-driven electrostatic ion-cyclotron

modes in kappa-Maxwellian plasma where the parallel ve-

locity distributions of electrons and protons are modeled by

kappa distributions and the perpendicular velocity distribu-

tions are modeled by Maxwellian distributions with parallel

temperatures different from perpendicular temperatures. In

particular, dependence of the stability properties on various

parameters, such as V0, kk, k?, Tek=Tik, Tik=Ti?, and xpe=Xe,

has been discussed in some details. For comparison, we have

also presented the corresponding results for bi-Maxwellian

plasma where both the parallel and the perpendicular veloc-

ity distributions are modeled by Maxwellian distributions

with parallel temperatures different from perpendicular tem-

peratures. Quasilinear estimates of resonant ion heating rates

due to ion-cyclotron turbulence in the two types of plasma

have also been presented for comparison. In order to gain

some preliminary understanding of the linear instability in

kappa-Maxwellian plasma and its comparison with that in

bi-Maxwellian plasma, we have included approximate ana-

lytical solutions of the dispersion relations. But, more em-

phasis has been given on the numerical solutions of the

dispersion relations in order to provide accurate and compre-

hensive comparison over a wide range of values of the vari-

ous plasma parameters. Numerical analysis has been carried

out for electron-proton plasma. Qualitatively similar, but

quantitatively different due to increased ion mass, results are

expected for heavier-ion plasma.

Linear stability properties of the current-driven electro-

static ion cyclotron modes, as well as the quasilinear ion

heating rates due to ion-cyclotron turbulence, in bi-

Maxwellian and kappa-Maxwellian plasmas are qualitatively

similar. However, there are quantitative differences, which

can be significant, depending on the values of je and ji. The

important conclusions of the comparative study are summar-

ized as follows.

(1) The threshold (critical) value of the electron drift speed

(i.e., current), above which the current-driven ion-cyclo-

tron instability is excited, is larger in kappa-Maxwellian

plasma for all values of Tik=Ti? and for all Tek=Tik above

certain value, which increases with decreasing Tik=Ti?
(see Fig. 1).

(2) Above and near the threshold (critical) value of the elec-

tron drift speed, the maximum growth rates are smaller

in kappa-Maxwellian plasma. But, as V0 is increased, the

maximum growth rates become larger in kappa-

Maxwellian plasma. Additionally, the unstable spectra in

kappa-Maxwellian plasma extend to comparatively

larger values of K?ð	 k?qiÞ and Kkð	 kkqiÞ (see

Figs. 2, 6–9). The frequencies of the unstable modes are

smaller in kappa-Maxwellian plasma (see Figs. 3, 6–9).

These conclusions are valid for all values of Tek=Tik and

Tik=Ti? for which the instability can be excited with a

given V0.

(3) The angle (between k and B0) of propagation of the max-

imum unstable mode decreases with increasing Tek=Tik
and Tik=Ti? in both bi-Maxwellian and kappa-

Maxwellian plasmas. In other words, as Tek=Tik and

Tik=Ti? increase, the maximum unstable mode propa-

gates more parallel to B0. However, the change in the

angle of propagation occurs more rapidly in kappa-

Maxwellian plasma (see bottom panels of Figs. 4 and 5).

The magnitude of the change in the angle of propagation

as well as the magnitude of the differences between the

bi-Maxwellian and kappa-Maxwellian plasmas depends

on the value of V0 > VC.

(4) The threshold (critical) value of the electron drift speed,

above which the current-driven ion-cyclotron instability

is excited, decreases sharply as xpe=Xe increases and

then settles down to a value, which is nearly independent

of xpe=Xe, for both bi-Maxwellian and kappa-

Maxwellian plasmas (see Fig. 10). For both types of

plasma, the maximum value of Im Wð	 Im x=XiÞ and

the corresponding value of Re Wð	 Re x=XiÞ decrease

as xpe=Xe decreases. The rate of decrement increases as

Tik=Ti? increases, and the instability disappears when

xpe=Xe is smaller than a certain value, which depends on

Tik=Ti? (see Fig. 11). For both types of plasma, the angle

(between k and B0) of propagation of the maximum

unstable mode decreases, i.e., the mode propagates more

parallel to B0, with increasing xpe=Xe (see Fig. 12).

Quantitative differences between the two types of plasma

are evident from the figures.

FIG. 14. The function J appearing in Eq. (32) vs. unstable values of

Kkð	 kkqiÞ for K?ð	 k?qiÞ ¼ 0:8, xpe=Xe ¼ 1=15, V0ð	 V0=VekÞ ¼ 1,

Tek=Tik ¼ 1, and selected values of Tik=Ti? . The solid curves represent J

given by Eq. (33) for bi-Maxwellian plasma and the dashed curves represent

J given by Eq. (34) for kappa-Maxwellian ðje ¼ ji ¼ 3Þ plasma.
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(5) Quasilinear estimates of the resonant ion heating rates sug-

gest that both the perpendicular and the parallel heating

rates are larger in kappa-Maxwellian plasma. This is basi-

cally due to the power-law dependence (as opposed to the

exponential dependence) on vk of the distribution of reso-

nant ions in kappa-Maxwellian plasma [see Eqs.

(29)–(34)]. They also suggest that, under certain conditions,

ions are heated preferentially in the perpendicular direction

in both bi-Maxwellian and kappa-Maxwellian plasmas, but

this effect is enhanced in kappa-Maxwellian plasma.

The present study is based on nonrelativistic kappa dis-

tributions. For some space plasma, highly energetic particles

are better modeled by relativistic kappa distributions. The

reader is referred to the works by Xiao35 and Xiao et al.36–38

for relativistic kappa distributions.
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